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Chapter Four 

Bending Theory 

4.1 Assumptions used in Bending Theory  

Assumptions used in derivation of the simple bending theory; 

1- The beam is initially straight and unstressed.  

2- The material of the beam is perfectly homogeneous and isotropic, the same density 

and elastic properties throughout.  

3- The elastic limit is nowhere exceeded.  

4- Young's modulus for the material is the same in tension and compression. 

5- Plane cross-sections remain plane before and after bending.  

6- Every cross-section of the beam is symmetrical about the plane of bending, about 

an axis perpendicular to the N.A. 

7- There is no resultant force perpendicular to any cross-section. 

4.2 Simple Bending Theory 

If we now consider a beam initially unstressed and subjected to a constant B.M. 

along its length, pure bending, as would be obtained by applying equal couples at each 

end, it will bend to a radius R. 

• There must be a one surface in tension and the other in compression. 

• There is axis at which the stress is zero and called neutral axis N.A. 

 

Fig. 4.1 Beam subjected to pure bending (a) before, (b) after, the moment is applied. 
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Consider the two cross-sections of a beam, HE and GF, originally parallel Fig. 

4.1(a). When the beam is bent, Fig. 4.1(b), it is assumed that these sections remain 

plane; H' E' and G' F', the final positions of the sections, are still straight lines. They 

will then subtend some angle θ. 

Consider some fiber AB in the material, distance y from the N.A. When the beam 

is bent this will stretch to A'B'. 

Strain in fiber AB = 
extension

original length
=

A'B'  −  AB

AB
  

But  AB = CD, and, the N.A. is unstressed, CD = C'D'. 

Strain =
A'B'  −  C'D'

C'D'
 = 

(R + y)θ −  R θ

R θ
 = 

y

R
 

stress

strain
 =  Young's Modulus E 

Strain = 
σ

E
 

Equating the two equations for strain, 

σ

E
=

y

R
 

Or                                                                    
σ

y
=

E

R
  …………………………………  (4.1) 

Consider the cross-section of the beam (Fig. 4.2). From eqn. (4.1) the stress on a 

fiber at distance y from the N.A. is 

σ = 
E

R
 y 

Fig. 4.2 Beam cross-section.  
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If the strip of area δA, therefore, the force on the strip is 

F  = σ δA = 
E

R
 y δA 

This has a moment about the N.A. of 

F y = 
E

R
 𝑦2 δA 

The total moment for the whole cross-section is  

 M  = ∑
E

R
 y2 δA 

       = 
E

R
 ∑ y2 δA 

Since E and R are assumed constant. 

The term ∑ y2 δA is called the second moment of area of the cross-section and 

given the symbol I. 

M  = 
E

R
 I      and     

𝑀 

𝐼
 = 

E

R
   …………………………….  (4.2)  

Combining eqns. (4.1) and (4.2) we have the bending theory equation 

𝑀 

𝐼
 = 

𝜎

𝑦
 = 

E

R
       …………………………….  (4.3)  

4.3 Neutral axis 

As stated above, it is clear that if, in bending, one surface of the beam is subjected 

to tension and the opposite surface to compression there must be a region within the 

beam cross-section at which the stress changes sign, where the stress is zero and this is 

termed the neutral axis. 

Further, eqn. (4.3) may be re-written in the form 

σ  = 
M 

I
 y               …………………………….  (4.4)  

Eqn. (4.4) shows, at any section the stress is directly proportional to y, the distance 

from the N.A., σ varies linearly with y, the maximum stress values occurring in the 

outside surface of the beam where y is a maximum. 
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Typical stress distributions in bending are shown in Fig. 4.3. It is evident that the 

material near the N.A. is always subjected to relatively low stresses compared with 

the areas most removed from the axis. 

 

Fig. 4.3 Typical bending stress distributions. 

4.4 Second moment of area 

Consider the rectangular beam cross-section shown in Fig. 4.4 and an element of 

area dA, thickness dy, breadth B and distance y from the N.A. which by symmetry 

passes through the center of the section.  

 

 

 

 

 

 

Fig. 4.4 symmetrical rectangular beam 

The second moment of area I  about the center of the rectangle has been defined 

earlier as 

𝐼 = ∫ 𝑦2 𝑑𝐴 

For the rectangular section the second moment of area, an axis through the center 

about the N.A. is given by 

𝐼𝑁.𝐴 = ∫ 𝑦2 𝐵 𝑑𝑦

𝐷/2

−𝐷/2

=  𝐵 ∫ 𝑦2𝑑𝑦

𝐷/2

−𝐷/2

 

D 

 

B 

 

N.A. 

 

dA 

 dy 

 

y 
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= 𝐵 [
𝑦3

3
]

−𝐷/2

𝐷/2

=  
B D3

12
 ……………………………….   (4.5) 

Similarly, the second moment of area of the rectangular section about an axis 

through the lower edge of the section would be found using the same procedure but 

with integral limits of  0 to D. 

𝐼 = 𝐵 [
𝑦3

3
]

0

𝐷

=  
B D3

3
 ……………………………….   (4.6) 

For symmetrical sections, for instance, the I-section shown in Fig. 4.5, 

 

Fig. 4.5 symmetrical I-section. 

I N.A. = I of dotted rectangle  ̶  I of shaded portions 

= 
B D 3

12
− 2 (

b d 3

12
)  ……………………………….   (4.7) 

For unsymmetrical sections such as the T-section as shown in Fig. 4.6 

I N.A = I ABCD   ̶   I shaded areas + I EFGH 

              (about DC)         (about DC)      (about HG) 

(Each of these quantities may be written in the form BD3/3). 

Note: It can also be calculated using parallel axis theorem. 

As an alternative procedure it is possible to determine the second moment of area 

of each rectangle about an axis through its own centroid (IG = BD3/12) and to "shift" 

this value to the equivalent value about the N.A. by means of the parallel axis theorem.  

I N.A. = I G + Ah2   …………………………….  (4.8) 

where A is the area of the rectangle and h the distance of its centroid G from the N.A. 
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Fig. 4.6 unsymmetrical T-section. 

4.5 Bending of composite beams 

A composite beam is one which is constructed from a combination of materials. 

If such a beam is formed by rigidly bolting together, two timber joists and a reinforcing 

steel plate, then it is termed a flitched beam. 

The method of solution in such a case is to replace one of the materials by an 

equivalent section of the other. 

 

Fig. 4.7 Bending of composite or flitched beams: original beam cross-section and 

equivalent of uniform material (wood) properties. 

The moment at any section must be the same in the equivalent section as in the 

original so that the force at any given dy in the equivalent beam must be equal to that 

at the strip it replaces. 

σ t dy = σ' t' dy 

σ t = σ' t'    ………………………………  (4.9) 

𝜖 𝐸 t = 𝜖′ 𝐸′ t' 
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Since                                                   
σ

ϵ
 = E 

Similarity the strains must be equal, 

𝜖 = 𝜖′ 

𝐸 t = 𝐸′t'      or     
t'

t
 = 

E

E'
  …………………….    (4.10) 

t' = 
E

E'
 t   ………………. …………………….    (4.11) 

Thus to replace the steel strip by an equivalent wooden strip the thickness must 

be multiplied by the modular ratio E/E'.  

The equivalent section is one of the same materials throughout and the simple 

bending theory applies. The stress in the wooden part of the original beam is found 

directly and that in the steel found from the value at the same point in the equivalent 

material as follows: 

from equ. (4.9)                                      
σ

σ'
 = 

t'

t
 

and from equ. (4.10)                            
σ

σ'
 = 

E

E'
        or       σ  = 

E

E'
  σ'   ………..  (4.12)   

stress in steel = modular ratio × stress in equivalent wood 

Example 4.1  

An I-section girder, 200 mm wide by 300 mm deep, with flange and web of 

thickness 20 mm is used as a simply supported beam over a span of 7 m. The girder 

carries a distributed load of 5 kN/m and a concentrated load of 20 kN at mid-span. 

Determine: (a) the second moment of area of the cross-section of the girder, (b) the 

maximum stress set-up. 

Solution:  

(a) The second moment of area of the cross-section may be found in two ways. 

• Method 1 -Use of standard forms  

For sections with symmetry about the N.A., the standard I value for a rectangle 

about an axis through its centroid is bd3/12 , (as shown in Fig. 4.8). 
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I girder  =  I rectangle   ̶   I shaded portions 

           = [
200 × 3003

12
] 10−12 − 2 [

90 × 2603

12
] 10−12 

= (4.5 −  2.64)10−4 = 1.86 ×10−4 m4 

 

Fig. 4.8 symmetrical I-section. 

• Method 2 - Parallel axis theorem 

Consider the section divided into three parts - the web and the two flanges. 

I N.A. for the web = 
bd

 3

12
 = [

20 × 2603

12
] 10−12 

 I  of flange about AB  = 
bd

 3

12
 = [

200 × 203

12
] 10−12 

Therefore using the parallel axis theorem 

I N.A. for flange  =  IAB + Ah
2
 

where h is the distance between the N.A. and AB, 

I N.A. for flange  = [
200 × 203

12
] 10−12+ [(200 × 20)1402]10−12 

Therefore, the total I N.A. of girder 

= 10−12 {[
20 × 2603

12
]  + 2 [

200 × 203

12
] + (200 × 20 × 1402)} 

= 10−6 (29.3 + 0.267 + 156.8) 

= 1.86 × 10−4 m4 
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(b) The maximum stress may be found from the simple bending theory of eqn. (4.4), 

𝜎𝑚𝑎𝑥  = 
𝑀𝑚𝑎𝑥 𝑦𝑚𝑎𝑥

I
 

Now the maximum B.M. for a beam carrying a u.d.1. is at the center and given by 

wL2/8   . Similarly, the value for the central concentrated load is WL/4 also at the center. 

Mmax  = 
WL

4
 + 

wL2

8
 = [

20 × 103 × 7

4
] + [

5 × 103 × 72

8
] N m 

                               = (35.0 + 30.63)103 = 65.63 kN m 

σmax  = 
65.63 × 103 × 150 × 10−3

1.9 × 10−4
 =  51.8 MN/m2 

The maximum stress in the girder is 52 MN/m2, this value being compressive on 

the upper surface and tensile on the lower surface. 

Example 4.2  

A uniform T-section beam is 100 mm wide and 150 mm deep with a flange 

thickness of 25 mm and a web thickness of 12 mm. If the limiting bending stresses for 

the material of the beam are 80 MN/m2 in compression and 160 MN/m2 in tension, find 

the maximum u.d.1. that the beam can carry over a simply supported span of 5 m. 

Solution:  

The second moment of area in the simple bending theory is taken about the N.A. 

this always passes through the centroid of the section we can take moments of area 

about the base to determine the position of the centroid and hence the N.A. 

y  = 
∑  yA

∑ A
 

y  = 
(100 × 25 × 137.5)10−9 + (125 × 12 × 62.5)10−9

[(100 × 25) + (125 × 12)]10−6
 

 y  = 
437.5 × 10−6

4000 × 10−6
 =  109.4 × 10−3 =  109.4 mm 
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Fig. 4.9 unsymmetrical T-section. 

The second moment of area I dividing the section into convenient rectangles with their 

edges.  

 I  = 
1

3
[(100 × 40.63) - (88 × 15.63) + (12 × 109.43)]10−12 

 = 
1

3
(6.69 − 0.33 + 15.71)10−6  =  7.36 × 10−6 m4 

Now the maximum compressive stress will occur on the upper surface where          

y = 40.6 mm, and, using the limiting compressive stress value quoted, 

M  = 
σ I

y
 = 

80 × 106 × 7.36 × 10−6

40.6 × 10−3
 = 14.5 kN m 

This suggests a maximum allowable B.M. of 14.5 kN m. It is now necessary to 

check the tensile stress criterion, which must apply on the lower surface, 

M  = 
σ I

y
 = 

160 × 106 × 7.36 × 10−6

109.4 × 10−3
 = 10.76 kN m 

The greatest moment that can be applied to retain stresses within both conditions 

quoted is M = 10.76 kN m. 

But for a simply supported beam with u.d.l., 

𝑀𝑚𝑎𝑥  = 
w 𝐿2

8
 

w  = 
8 M 

L2
 = 

8 × 10.76 × 103 

52
 = 3.4 kN/m  

The u.d.1. must be limited to 3.4 kN/m. 
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Example 4.3  

A flitched beam consists of two 50 mm × 200 mm wooden beams and a 12 mm × 

80 mm steel plate. The plate is placed centrally between the wooden beams and 

recessed into each, so that, when rigidly joined, the three units form a 100 mm × 200 

mm section as shown in Fig. 4.10. Determine the moment of resistance of the flitched 

beam when the maximum bending stress in the timber is 12 MN/m2. What will be the 

maximum bending stress in the steel?  

For steel E = 200 GN/m2; for wood E = 10 GN/m2. 

 

Fig. 4.10 flitched beam. 

The thickness t' of the wood equivalent to the steel which it replaces is given by 

eqn. (4.11),  

t' = 
E

E'
 t = 

200 × 109

10 × 109
× 12 = 240 mm   

Then, for the equivalent section 

I N.A. = 2 [
50 × 2003

12
] − 2 [

6 × 803

12
] + [

240 × 803

12
] 10−12 

                                 = (66.67  ̶  0.51 + 10.2) 10  ̶  6 = 76.36 × 10  ̶  6  m4 

Now, the maximum stress in the timber is 12 MN/m2, and this will occur at y = 100 

mm; thus, from the bending theory, 

M  = 
σ I

y
 = 

12 × 106 × 76.36 × 10−6

100 × 10−3
 = 9.2 kN m 
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The maximum stress in the steel with this moment applied is then determined by 

finding first the maximum stress in the equivalent wood at the same position at                  

y = 40 mm. Therefore, maximum stress in equivalent wood; 

𝜎𝑚𝑎𝑥
′   = 

M y

I
 = 

9.2 × 103 × 40 × 10−3

76.36 × 10−6
 =  4.82 × 106  N/m2 

The maximum stress in the steel is given by 

𝜎𝑚𝑎𝑥 = 
E

E'
 𝜎𝑚𝑎𝑥

′  = 
200 × 109

10 × 109
× 4.82 ×106   

                                                      = 96 × 106 = 96  MN/m2  

 

 

Problems 

4.1 Determine the second moments of area about the axes XX for the sections shown 

in Fig. 4.11.                                                            [15.69, 7.88, 41.15, 24; all × 10-6 m4] 

 
Fig. 4.11. 

4.2 A rectangular section beam has a depth equal to twice its width. It is the same 

material and mass per unit length as an I-section beam 300 mm deep with flanges 25 

mm thick and 150 mm wide and a web 12 mm thick. Compare the flexural strengths of 

the two beams.                                                                                                     [8.59: 1] 
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4.3 A conveyor beam has the cross-section shown in Fig. 4.12 and it is subjected to a 

bending moment in the plane YY. Determine the maximum permissible bending 

moment, which can be applied to the beam (a) for bottom flange in tension, and (b) for 

bottom flange in compression, if the safe stresses for the and compression are 30 

MN/m2 and 150 MN/m2 respectively.                                                  [32.3, 84.8 kN m] 

 
Fig. 4.12. 

4.4 A horizontal steel girder has a span of 3 m and is built-in at the left-hand end and 

freely supported at the other end. It carries a uniformly distributed load of 30 kN/m 

over the whole span, together with a single concentrated load of 20 kN at a point 2 m 

from the left-hand end. The supporting conditions are such that the reaction at the left-

hand end is 65 kN. 

(a) Determine the bending moment at the left-hand end and draw the B.M. diagram. 

(b) Give the value of the maximum bending moment. 

(c) If the girder is 200 mm deep, and has a second moment of area of 40 × 10-6 m4, 

determine the maximum stress resulting from bending.              [40 kN m; 100 MN/m2] 

4.5 Figure 4.13 represents the cross-section of an extruded alloy member, which acts 

as a simply supported beam with the 75 mm wide flange at the bottom. Determine the 

moment of resistance of the section if the maximum permissible stresses in tension and 

compression are respectively 60 MN/m2 and 45 MN/m2.                             [2.62 kN m] 
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Figure 4.13. 

4.6 A trolley consists of a pressed steel section as shown in Fig. 4.14. At each end, 

there are rollers at 350 mm centers. If the trolley supports a mass of 50 kg evenly 

distributed over the 350 mm length of the trolley calculate, using the data given in    

Fig. 4.14, the maximum compressive and tensile stress due to bending in the pressed 

steel section. State clearly your assumptions.                                       [14.8, 42.6 MN/m2] 

 

Fig. 4.14. 

 

 

 

 

 


